PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system.
نویسندگان
چکیده
Pseudomonas aeruginosa is an opportunistic pathogen that causes both acute and chronic infections in immunocompromised individuals. This gram-negative bacterium produces a battery of virulence factors that allow it to infect and survive in many different hostile environments. The control of many of these virulence factors falls under the influence of one of three P. aeruginosa cell-to-cell signaling systems. The focus of this study, the quinolone signaling system, functions through the Pseudomonas quinolone signal (PQS), previously identified as 2-heptyl-3-hydroxy-4-quinolone. This signal binds to and activates the LysR-type transcriptional regulator PqsR (also known as MvfR), which in turn induces the expression of the pqsABCDE operon. The first four genes of this operon are required for PQS synthesis, but the fifth gene, pqsE, is not. The function of the pqsE gene is not known, but it is required for the production of multiple PQS-controlled virulence factors and for virulence in multiple models of infection. In this report, we show that PqsE can activate PQS-controlled genes in the absence of PqsR and PQS. Our data also suggest that the regulatory activity of PqsE requires RhlR and indicate that a pqsE mutant can be complemented for pyocyanin production by a large excess of exogenous N-butyryl homoserine lactone (C4-HSL). Finally, we show that PqsE enhances the ability of Escherichia coli expressing RhlR to respond to C4-HSL. Overall, our data lead us to conclude that PqsE functions as a regulator that is independent of PqsR and PQS but dependent on the rhl quorum-sensing system.
منابع مشابه
Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa.
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis patients and is a major source of nosocomial infections. This bacterium controls many virulence factors by using two quorum-sensing systems, las and rhl. The las system is composed of the LasR regulator protein and its cell-to-cell signal, N-(3-oxododecanoyl) homoserine lactone, and the rh...
متن کاملUnravelling the Genome-Wide Contributions of Specific 2-Alkyl-4-Quinolones and PqsE to Quorum Sensing in Pseudomonas aeruginosa
The pqs quorum sensing (QS) system is crucial for Pseudomonas aeruginosa virulence both in vitro and in animal models of infection and is considered an ideal target for the development of anti-virulence agents. However, the precise role played by each individual component of this complex QS circuit in the control of virulence remains to be elucidated. Key components of the pqs QS system are 2-h...
متن کاملRpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator
The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. ...
متن کاملTranscriptomic analysis reveals a global alkyl-quinolone-independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosa to plant and animal hosts
The quorum sensing (QS) system of Pseudomonas aeruginosa constitutes a sophisticated genome-wide gene regulatory network employing both N-acylhomoserine lactone and 2-alkyl-4-quinolone (AQ) signal molecules. AQ signalling utilizes 2-heptyl-3-hydroxy-4-quinolone (PQS) and its immediate precursor, 2-heptyl-4-quinolone (HHQ). AQ biosynthesis requires the first four genes of the pqsABCDE operon and...
متن کاملThe Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa.
The opportunistic pathogen Pseudomonas aeruginosa uses intercellular signals to control the density-dependent expression of many virulence factors. The las and rhl quorum-sensing systems function, respectively, through the autoinducers N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone (C(4)-HSL), which are known to positively regulate the transcription of the elastase-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 190 21 شماره
صفحات -
تاریخ انتشار 2008